If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-14x-20=0
a = 10; b = -14; c = -20;
Δ = b2-4ac
Δ = -142-4·10·(-20)
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{249}}{2*10}=\frac{14-2\sqrt{249}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{249}}{2*10}=\frac{14+2\sqrt{249}}{20} $
| m-14/3-4m-19/5=1 | | -x+8=6x-27 | | -s=4-5s | | 13x-2(8+5x)=3(2x-1) | | 1/15x=3/15 | | 100+7n=8n+80 | | 10x²+5x-6=0 | | -2(y+4)=y-7+4(3y+1) | | 3(2x-4)=-3x+9 | | 4(2x-1)+6=10 | | -8+7u=-8-10 | | -3x-30+10x=5 | | -1=-6(k-7)+6(k-8) | | 6y+18=4(y-2 | | -5(4x-8)+6x=4(x+8) | | -5(-3w+1)-3w=2(w-9)-3 | | 2x)+(5x-23)+(5x+5)=180 | | n+16=–3n | | d/12+9=15 | | 60=3(-8a+4) | | -5(-3w+1)-3w=2+(w-9)-3 | | 5a-(3a+6)=2a+6. | | (3/4)x=2 | | 5(8x+4)+7=267 | | (3m-4)+(4m+4)= | | 7+7n=-8+4n | | n/282.4=713.4 | | x/5−9=−4 | | -4(8+6x)+24x=154 | | 14=Y/x | | -9-9r=-1-8r | | 3(4n–3)=15 |